Analysis of thin piezoelectric solids by the boundary element method
نویسندگان
چکیده
The piezoelectric boundary integral equation (BIE) formulation is applied to analyze thin piezoelectric solids, such as thin piezoelectric films and coatings, using the boundary element method (BEM). The nearly singular integrals existing in the piezoelectric BIE as applied to thin piezoelectric solids are addressed for the 2-D case. An efficient analytical method to deal with the nearly singular integrals in the piezoelectric BIE is developed to accurately compute these integrals in the piezoelectric BEM, no matter how close the source point is to the element of integration. Promising BEM results with only a small number of elements are obtained for thin films and coatings with the thickness-to-length ratio as small as 10 , which is sufficient for modeling many thin piezoelectric films as used in smart materials and micro-electro-mechanical systems. 2002 Elsevier Science B.V. All rights reserved.
منابع مشابه
A Boundary Element Method for the Analysis of Thin Piezoelectric Solids
Piezoelectric films or coatings are applied widely as sensors and actuators in smart materials and micro-electro-mechanical systems (MEMS). Analysis of these delicate thin piezoelectric solids are very important for the design and evaluations of such advanced materials. In this thesis, based on the conventional boundary integral equation (CBIE) formulation for piezoelectricity, an efficient, re...
متن کاملOn the conventional boundary integral equation formulation for piezoelectric solids with defects or of thin shapes
In this paper, the conventional boundary integral equation (BIE) formulation for piezoelectric solids is revisited and the related issues are examined. The key relations employed in deriving the piezoelectric BIE, such as the generalized Green's identity (reciprocal work theorem) and integral identities for the piezoelectric fundamental solution, are established rigorously. A weakly singular fo...
متن کاملPii: S0955-7997(01)00004-2
In this paper, the conventional boundary integral equation (BIE) formulation for piezoelectric solids is revisited and the related issues are examined. The key relations employed in deriving the piezoelectric BIE, such as the generalized Green's identity (reciprocal work theorem) and integral identities for the piezoelectric fundamental solution, are established rigorously. A weakly singular fo...
متن کاملBoundary Integral Equation Formulations for Piezoelectric Solids Containing Thin Shapes
A weakly-singular form of the piezoelectric boundary integral equation (BIE) formulation is introduced in this paper, which eliminates the calculation of any singular integrals in the piezoelectric BIE. The crucial question of whether or not the piezoelectric BIE will degenerate when applied to crack and thin shell-like problems is discussed. It can be shown analytically that the conventional B...
متن کاملFree vibration analysis of thin annular plates integrated with piezoelectric layers using differential quadrature method
In this article, using generalized differential quadrature (GDQ) methods, free vibration of a thin annular plate coupled with two open circuit piezoelectric layers, is numerically studied based on the classical plate theory. The governing differential equations with respective boundary conditions are derived and transformed into a set of algebraic equations by implementing the GDQ rule, then so...
متن کامل